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AbslraeL A branching Nles generating function !s given for SO(7) 3 SU(Z)3, along 
with its interprelalion in terms of basis states, and inslmctioni for calculating generalor 
matrix elements. The generalor matrix elements for the degenerate ( O , O , c )  lepresen- 
lations are calculated a8 an example of this pmcedure. 

1. Introduction 

The groupsubgroup pair SO(7) 3 SU(Z)3 has been discussed by Van den Berghe 
ef a1 (1982); they treat the symmetric representations ( a , O , O )  in detail and give the 
relevant generator matrix elements. In a subsequent paper (Van der Jeugt and De 
Mlde  1984) the shift operator technique is developed for the problem in question; 
generator matrix elements for (Q ,O,O) ,  (a ,O, l )  and (O,O,c) are given. 

In section 2 we use generating function methods to find the complete branching 
rules for SO(7) 3 SU(Z)3 . In section 3 it is shown how the branching rule 
generating function can be used to define polynomial basis states (in the states of 
fundamental irreducible representations), and how the states can be used to derive 
generator matrix elements. The methods apply to any groupsubgroup pair. In 
section 4 we treat the degenerate IRS (0  , 0, c )  as an example. 

2. Generating function for branching rules 

When polynomial basis states are required for a groupsubgroup pair one should start 
by calculating the relevant branching rules generating function; generating function 
techniques are explained in a forthcoming review article (Gaskell er al 1992; see also 
Gaskell et a/ 1978 for an early version). For SO(7) 3 SU(Z)3 the branching rules 
generating function is a rational function F in six dummy variables A, B, C,  S, T 
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and U which carry as exponents the three representation labels of SO(7) and those 
of the three SU(2) subgroups respectively. The power series expansion of F 

F = A"BbCCS"TLUu~abc , s ,u  (2.1) 
~1 bc 
s i u  

gives, as the coefficient of A"BbCeS8TLU', the multiplicity of the SU(2)3 ire- 
ducible representation (IR) ( s , t , u )  in the SO(7) IR ( a , b , c ) .  

'lb calculate the SO(7) 3 SU(2)3 generating function from first principles, one 
might start with the SO(7) character generator. But it contains 127 terms, each 
a fraction with 12 denominator factors and a polynomial numerator (Gaskell 1983; 
see also Baclawski 1983 and King and El-Sharkaway 1984); we deem this approach 
impracticable. 

Fortunately, two other approaches are available. The first uses the subgroup chain 
SO(7) 3 SO(6) - SU(4) 3 SU(2)2 x U(1); the S U ( 2 )  subgroups are two of the 
three we want, labelled by s and t in equation (2.1), while U ( l )  labels refer to the 
weighrs of the third, labelled by U in (2.1); it is known how to convert a generating 
function for weights into the corresponding one for IRS (Gaskell et a1 1978, Gaskell 
er a1 1992 or see below). 

The second alternative approach, which we adopt, makes use of the g r o u p  
subgroup pair SO(7) 3 SO(5) x U(1), whose generating function is given by Patera 
et 01 (1980). Then we convert U ( l )  whose labels are SU(2) U weights into the 
corresponding IRS to obtain the (new) branching rule generating function for the sub- 
joining SO(7) > SO(5) x SU(2) (alternatively use the known generating functions 
for SO(7) > Sp(6) (Patera ef a1 1980) and Sp(6) 3 {Sp(4)  - S 0 ( 5 ) }  x SU(2)). 
Finally we use the known SO(5) 3 SU(2) '  generating function to obtain the desired 
generating function for SO(7) 3 SU(2)3.  

Our starting point is then the SO(7) 3 S O ( 5 )  x U(l) branching rules generating 
function 

1 
( 1  - AZ2) (1 -  AZ-2)(1-  B E Z Z ) ( l -  B E Z - z ) ( l  - CDZ)(1 - C D Z - I )  

B D ~  + B + 1 
[ ( l - A E ) ( l -  CZE) ( 1 - C 2 E ) ( 1  - B )  ( 1  - B ) ( l - B D Z )  

1 A B D Z E  
( 1  - B D 2 ) ( 1  - A E )  

where the dummy variables A, B and C carry the SO(7) Dynkin labels, D and E 
carry S O ( 5 )  labels and Z carries the U(l)  label. 

'lb convert U ( l )  to S U ( 2 )  (U), it is necessary to multiply by ( 1  - Z ) ( l -  Liz)-' 
and retain the constant term in Z. The result is 

1 
(1 + A ) ( 1  + BE)(1  - A z C z D 2 ) ( 1  - B E U Z ) ( l  - A B E ) ( l  - C D U )  

1+ B C D E U + A B C D E U + A B C Z D z E  
( 1  - B C Z D Z E )  

I AUZ + A2BCDEU3 + ABEU2 + ACDU 
(1 - AU') + 
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multiplied by the factor in the square bracket of (2.2) above. It is the branching 
rule generating function for SO(7) > SO(5) x SU(2) ,  with U carrying the SU(2)  
label U. Putting everything Over a common denominator we fortunately get rid of the 
troublesome denominator factors 1 - A B E  and 1 - BC2D2E.  The result is 

[ ( 1 +  A ) ( 1 +  B E ) ( l -  AC2D2)(1  - B E U 2 ) ( 1  - C D U ) ( l  - AU2)(1 - A E )  

x (1 - B D ~ ) ( I  - B ) ( I  - c 2 E  )] -' [ 1 +  B C D E U  + A B C D E U  

+ABC2D2E+ABEU2+ACDU-ABCDEU3-A2BC2D2EU2 
- ABC2D2EU2 - A2B2C3D3E2U3 - AB2C2D2E2U2 

- ABC3D3EU] .  (2.4) 

The remaining task is to eliminate the group SO(5) in favour of its subgroup 
SU(2)'; the SO(5) 3 SU(2)2 branching rule generating function is known to be 

[(l-  D S ) ( 1 -  DT) (1  - E ) ( l -  EST)] - '  (2.5) 

where ST carry the 1~ labels of the two SU(2)  subgroups. ?b eliminate S 0 ( 5 ) ,  
multiply (2.5). with D and E replaced by their reciprocals, by (2.4) and retain 
the coefficient of DOEo. We carried this out with the help of MAPLE, but the 
result (everything Over a common denominator) ir not immediately in a desirable 
form; it contains 14 denominator factors and a numerator consisting of 420 terms, 
of both signs. It is interesting that the numerator merely changes sign under the 
replacements A" -+ A4-*, E* -+ C" + Cd-=, Ss -+ Sb-", T' + p-' and 
U" - U4-". A desirable form has everything positive (i.e. no cancellations), so that 
we can interpret it in terms of an integrity basis (elementary multiplets) and construct 
piynomiai basis states. 

For the G 3 H branching rule generating function the number of denominator 
factors in each term should be f(rc + l G ) ,  the number of G labels, internal and 
external, less the number of internal H labels, 4(rH - l H )  (Racah 1965, p 57); pG, 
vH, 1, and 1, are the order ( T )  and rank ( 1 )  of the group G and the subgroup H 
respectively; hence the SO(7) 3 SU(Z)3  generating function requires 9 denominator 
factors ( T ~ ~ ( , )  = 21, 

'lb put our generating function in desirable form the numerator must be written as 
a sum of terms, each containing a product of five denominator factors and a positive 
coefficient. We know of no algorithm for such a separation. 

?b make some headway, we first looked at the degenerate cases (one or more 
SO(7) labels zero). For (a ,  0,0), ( 0 ,  b, 0), (O ,O,  c), ( a ,  b, 0),  (a, 0, c )  and ( 0 ,  b, c) 

Racah's formula for the number of internal labels in a degenerate case, see Seligman 
and Sharp 1983). The generating functions are easily found in a desirable form. For 
the cases with two labels non-zero we find 

= 3, T ~ ~ ( ~ ) ~  = 9 and = 3). 

the number of denominaton factors are 3,4,5,7,7:7 respectively (for a pneralkation of 

(abO): 1 [ly+ - c + n + P + n p ]  
abhh'ik C 

+-+=+em' m'+1' e (aOc): 

1 [l++ f + P + d + Q P '  
dd'hh'k fi (Obc): 
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Wr brevity we have adopted the convention that in a denominator factor a letter 
stands for unity minus that letter. The letters (elementary multiplets) are defined as 
follows: 

a = AST b= AU2 c =  A’ d = CSU 

g = BSTU2 d’ = CTU e = C2ST f = C  2 

h = B S 2  h‘ = BT2 i = BU2 j = B ~ S T U ~  

k = B2 1 = ACSU I’ = ACTU m = AC2S2 

mi = AC2T2 n = ABST p = ABU2 q = BCSU 

q’ = BCTU r = BC2ST s = ABCSU s t =  ABCTU 

t = A B C ~ S ~  t i =  A B C ~ T Z  U = A B C ~ S T U ~ .  
(2.9) 

The last five, which appear only in the general generating function, equation (2.10) 
below, are included here for convenience. 

There are five sets of ten elementary multiplets in each of which the elementary 
multiplets are compatible in pairs (and others with nine elementary multiplets-the 
required number). Each set includes acdd‘fhh‘k; the other two are respectively 
bi, bm,  bm’, e m ,  and em’. The first set is evident from equations (2.6)-(2.8). 
For the compatibility of h,h‘ and k with m and m’ in the other four sets it is 
necessary to look also at the branching rule for the SO(7) IRS (112) and (122). 
With the plausible assumption that elementary multiplets compatible in pairs are 
compatible in any combination we have five terms in the general generating function 
each with ten denominator factors, in violation of Racah’s counting, according to 
which there must be no more than nine. The cure for the disease is to make 
appropriate triples incompatible even though each pair in them is compatible. It 
seems that a f i ,  bmh’, aek and bm‘h are the only possible choices; each has all 
three SO(7) labels non-zero, so the change does not affect (abO), (aoc )  or (Obc) 
and each appears with negative sign in the numerator of the generating function 
with everything Over a common denominator. This leads to the generating function 
below, equation (2.10) (at least its denominator factors). It remains to find a choice 
of numerator terms that will that will reproduce the generating function calculated 
from (2.4) and (2.5). The degenerate cases (2.6)-(2.8) provide useful information. 
This can be augmented using the Grohner hasis package in MAPLE (see Char el a1 
(1988), Buchberger (1987)) to reduce the numerator modulo carefully chosen ideals 
generated by certain denominator terms which eliminate all but one set of numerator 
terms. Although this is not an algorithmic process it turns out that the information 
obtained is sufficient to find a possible form of the generating function without too 
much difficulty. As an example of this process let I, = (1 - B U 2 ,  1 - BSTU’), the 
ideal generated in R = Q[A,  B ,  C ,  S, T ,  U ]  by the denominator terms 1 - B U 2  and 
1 - BSTU2.  We find I, = (BU2  - 1,  ST - 1) with B U 2  - 1 and ST - 1 being 
a Grobner basis with respect to, for example, the deglex term ordering. Considering 
(2.10) we can see that when reduced modulo I, the common numerator is equivalent 
to ( 1-A2)( 1-C2)2( 1 -AC2SZ) (  1 -AC2Tz) (g+j ) ,  but this factorization may not 
be apparent since equality is only modulo terms in I,. Ib remove the extra factors we 
can work, for example, modulo 1, = ( BU2 - 1,  ST - 1 ,  A”, Cl2), since the extra 
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factors have inverses in R/12 ( (1 - A')-' = 1 + E:=, A2' etc). The result is that 
we can find the numerator of the sixth term in (210) modulo I , ,  it is 1 + b. Now the 
rewrite rules for Iz  are BUZ c 1,  ST H 1, AI2 H 0 and C12 H 0. Assuming that 
there are no numerator terms involving 12th powers of A or C these rules presewe 
the number of numerator terms. We conclude that the sixth term in (2.10) must 
have exactly two numerator terms. Comparing with (2.8) suggests that the second 
term is the reduction of j .  We chose the second to be g ,  but i and 1 would also 
be consistent. Continuing in this way, removing terms as they are produced, leads to 
(2.10). 

The final result is 

[ 1 + a q  + aq'+ a f n  + nq + nq'+ u + nu 
d d' abc f hh'k 

f i  + q + q' + qq' + f p +  f n  + p q  + pq' + m + 1 + + bt 
bc f hh'ik abc f h k m  + 

m'+ l ' +  s'+ bt' i + n + p +  n p  + g + j 
abcfh'km' + abchh'ik abghh'ik 

h'm + t hm' + t' ek  + r ekm' + m'r 
a c f h h ' k m  + acfhh'km' cefhh'km' cefhh'km' 

em' 3 .  e 

+ ace fhh 'm + acefhh'm' 
(2.10) 

Again we have used the convention that in a denominator factor a letter stand 
for unity minus that letter. The letters were defined in equation (2.9). 

3. Polynomial basis states 

For the construction of polynomial basis states we follow an approach suggested by 
de  Guise and Sharp (1991) in connection with the S U ( 3 )  3 DT and SO(5) 3 DT 
problems. This section's discussion is general, using SO(7) 3 only as an 
example. We will speak of a simple compact Lie group G, of rank I, and when 
required, a subgroup H. 

For the IR ( a l , .  . . , a ( )  our basis states are to be polynomiak of degree a;  in 
the basis states of the ith fundamental IR of G. That means that only stretched (IR 
labels additive) IRS in the direct product of a i  mpies of each fundamental IR are to 
be retained. Looking only at parts of total degree two we have for S O ( 7 )  

( 1  3 0 ,  O);d 3 (2 7 0 1 O h 7  + (O, (3.la) 

(0,1,0);31 3 (0,2,0)163 + (2,0,0)27+ (0,0,2)35 + (o,o,o), ( 3 3 9  
(0,0,1).&3 ( ~ ~ ~ ~ ~ ) ~ ~ + ( ~ ~ ~ ~ ~ ) i  ( 3 . 1 ~ )  
( 1 , 0 , 0 )  X (0,1,0)147 3 (1,1,0)105 + (0,0,2)35 + ( ~ Y O ~ O ) ?  
( l , o , 0 ) x ( 0 , 0 , 1 ) 5 , 3 ( 1 , 0 , 1 ) r d + ( o , 0 , 1 ) ,  (3.le) 

'11 

( 3 . w  

(0313 0) x (0,0,1)16d 3 ( O ,  1 3  1)112 + (l1 O? l ) 4 8  + ('3 ' ) a '  (3 . i f )  

The square of an IR above means the symmetric (polynomial) part of the direct 
product of two copies. A subscript on an IR or product is its dimension. The 
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stretched part of each product is the first IR on the right. The states of all the other 
I R s  are unwanted for the purpose of forming our polynomial basis (we call them 
elementary unwanted states). There may be more elementary unwanted states of 
higher degree; their number, however is finite (by the Hilbert basis theorem). 

To deal consistently with the unwanted states we need the help of the group’s 
character generator in a positive form. Gaskell (1983) has given a general algorithm 
for its construction. We may characterize it by listing the incompatible pairs (or 
triples etc, with all members of each subset mutually compatible) of fundamental 
states. ‘Incompatible’ means that the states never appear multiplied for the purposes 
of forming states of higher IRs; a state is incompatible with itself if its square never 
appears. Different versions of the character generator are possible (they are identical 
when put over a common denominator). Any valid version yields a consistent set of 
incompatibilities. 

Each incompatible pair (triple etc) is one term in the expression for an elementary 
unwanted state. We formally set each elementary unwanted state equal to zero 
(i.e. work modulo the ideal they generate) and eliminate each incompatible pair 
(triple etc) in favour of the other terms whenever it arises. The surviving states of 
degree ai in the ith fundamental basis states constitute a complete, non-redundant 
basis for the IR (a,). 

However, they generally contain admixtures of IRS lower than their degree would 
indicate. Sometimes (not usually) one can define ‘traceless’ variables corresponding 
to the basis states of certain fundamental IRs such that products of powers of them 
mntain no unwanted states (Lohe and Hurst 1971, Patera et a1 1989, section 4 of this 
paper). The same effect is obtained by operating with P, an instruction to retain only 
the wanted part of its operand. Since P commutes with group generators or functions 
of them such as a Hamiltonian lying in the enveloping algebra, one can ignore the 
role of P and work with the states as they stand when calculating generator matrix 
or matrix elements of, for example, a Hamiltonian or missing label generator (a 
subalgebra scalar in the group’s enveloping algebra). The matrix element ( i  I R I j) 
is the coefficient of the basis state I i) when the operator R acts on the state I j); the 
round bracket notation is used to indicate that the matrix element is not defined by 
a scalar product. 

Our states at this point do not recognize any subgroup (except U(1)’ correspond- 
ing to the weight components). To organize them into multiplets of a subgroup H 
we need the G 3 H branching rules generating function. It defines elementary mul- 
tiplets. Construct their highest weight states as polynomials in the fundamental basis 
states, eliminating incompatible pairs, triples etc. as explained in the second preceding 
paragraph. The highest state of an arbitrary subgroup multiplet is given by the appro- 
priate product of powers of highest states of elementary multiplets. Lower states are 
obtained by operating with lowering subalgebra generators, eliminating incompatible 
combinations of fundamental basis states wherever they arise. The basis states are not 
orthogonal in general (except when the subgroup provides enough labels to specify 
them completely). For the purpose of calculating matrix elements of generators etc, 
there is no need to orthonormalize them. 

4. The degenerate SO(7) irreducible representations ( O , O ,  c )  

In this section we construct the SO(7) 3 SU(2)3  basis states for the degenerate 
representations (O ,O,  c ) .  There are no missing labels so the states may be normalized 
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explicitly; we then evaluate the generator matrix elements. Apart from those of the 
subalgebra SU(2)3 the generators comprise an SU(Z)3 tensor G(1J,2). We suppress 
the representation labels (1, 1 ,2)  and exhibit the three component labels as subscripts 
where necessary; G has 12 components, G,,k where i = fl, j = &1 and k = f2,O. 

We name the eight basis states of ( O , O ,  1) as 

a = [ l , O , l ]  P = [ O , l ,  1) Y = [ o , i ,  11 
6 = [ i , o , i ]  a' = [ i , o , r ]  p' = [o,i, 'I] 
y'= [ O , l , r ]  6' = [l,O,q. 

The numbers in the square brackets are the SU(2)3  weight components 
[m,,m,,m,]; in a fundamental weights basis the components are A, = ( m ,  - 
m, - m,)/2, A, = m,, A, = m, - m,. 

The subalgebra root generators may be taken as the differential operators 

S, = aa, + 6'a,. 

T+ = pa, + r*ap. T- = yap  +pa,. ( 4 4  
U, = aa,. + 6aa* -@a,,. - -,a,,. 

s- = sa, + a*aa. 

U _  = 6*a, + a*a, --,*a,, - pa,,. 

We give one component of G 

G ~ , ~ , ~  = + 6a,. . 

The other 11 components may be obtained from (4.2) by applying the SU(2), root 
generators. The generators corresponding to the simple mots a l ,a2 .a3  of SO(7) 
are respectively Gi,i,,, T, and G,,T,~. 

The character generator for (O,O,c) IRS according to Gaskell (1983) may be 
written as 

According to (4.3) 6 and 6' are incompatible. The reason is an unwanted scalar, the 
second term on the right hand side of equation (3.1~). It is M = aa* - Pp' + yy' - 
66'; we set M = 0 and eliminate 66' whenever it arises by writing 

66' = aa' - ~ L T  + yy'. (4.4) 

The SO(7) 2 SU(2), branching rules generating function for ( O , O , c )  is obtained 
from (2.7) hy setting A = 0, from (2.8) by setting B = 0 or from (2.10) by setting 
A = B = 0. It is 

(4.5) 
1 

(1 - d ) ( l - d ' ) ( l - e ) ( l - f ) '  

The elementary multiplets d, d', e and f are defined in equation (2.9). Explicitly we 
find 

d = a  d ' = P  e = a y ' + p 6 '  f = aa' + Pp' - yy' - 66'. (4.6) 
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We made f specific by requiring that it be orthogonal to the scalar M above. We 
must eliminate the incompatible product 66' by means of (4.4) above. Dropping a 
factor of two we get 

f = PF-77 ' .  (4.64 

Do not forget that the operator P is understood to operate on all our states from 
now on. It projects out unwanted parts. 

Thus we find for the highest state of the general SU(2)3 multiplet 

Here 

a = i ( s + u - l )  b = i ( t + u - s )  d = i ( s + t - u )  e = T ( c - s - t )  1 

( 4 4  

or 

s = a + d  t = b + d  u = a + b  c = a + b + Z d + Z e  (4.9) 

N,,, is a normalization factor, to be determined below. Since the exponents in (4.7) 
are non-negative integers, we have the branching rules 

c > s + t  2 U 2 Is - t i  (4.10) 

with s + 1 and U having the parity of c. We mention in passing two methods of 
extracting the wanted part of a state. The first is to replace the variables a , P ,  
y,6 ,  a*, p', y* and 6' by their 'traceless' analogues 

a' = a - M (  N + 4)-'a,. p' = 0 + M (  N + 4)-'a0. (4.11) 

etc. The sign of the second term in each of (4.11) is negative for a', y', a", y" and 
positive for each of p',p*',6', 6.'. Here M is the unwanted scalar under discussion 
and N is the degree operator. 

Another method is to write (the projection operator P is understood not to be 
operating in (4.12) except where shown explicitly) 

Pa"Pb(ay'+/36')d(PP'-yy*)e = A,aapb(ay*+p6*)d(PP1-ry*)e-=MZ. 

(4.12) 

Operate on both sides with M t  = ~9~8,. - apaa. + a?!,. -aha,.. The left hand 
side then vanishes (it was orthogonal to anything contalnlng M as a factor) and we 
get a recursion formula for A, whose solution is 

A, = (4.13) e ! ( b +  d +  e + l ) ! ( a  + b +  2d  + 2 e -  z + 2)!  
(a + b +  2d + 2e + 2 ) ! z ! ( e  - z ) ! ( b +  d + e - z + l)!' 
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We now calcUlate generator matrix elements with respect to the basis States (4.7) 
and incidentally determine the normalization eonstant NSl,. The subalgebra matrix 
elements are trivial. The matrix elements of G are given by the Wigner-=kart 
theorem in terms of the reduced matrix elements by 

m, mt 

It 
x ((s'+ l ) ( t ' +  l ) ( U ' +  1 ) ) y .  

necessary for us to give only the reduced matrix elements c 
We start by writing 

,-. J. 

(4.14) 

o o c  0 0 C 

G'i,i,?Is t u ) = x A i j k 1 s + i  t + j  u + k )  (4.15) 

where i and j take the values 1 and -1 and k takes the values 2,O and -2. Operate 
on both sides with S+T+U:. All the terms on the right except that with i = j = 1 ,  
k = 2 are annihilated and we find 

I S  t U 1  i j k  I S - 1  t - 1  U - 2 1  

All, = - 2 ( s +  1~(t+l!!u+l!(U+2!N,+,,:+:,,;: N,,, 
(4.16) ( c  - s - t )  

We now calculate the Aijk one by one by transferring to the left hand side of (4.15) 
the terms involving A already determined and applying raising subalgebra generators 
to annihilate all but one term remaining on the right. The last A to be determined 
is (using MAPLE) 

(4.17) 

Because Gi,i,T = -(Gl12)t we have the equality (the two sides are matrix elements 
of Hermitian conjugate operators between the Same states in reverse order 

A i , i , ~ ( s  + 1, t + 1 ,  U + 2 )  = -((s -t 1 ) ( t +  1)( U + 1 ) ( u  + 2)/2)1'2A, ,2(s ,  1 ,  U). 

This implies the recurrence formula for the normalization constants 

(4.18) 

- I  112 
} x ( t  + U - s + 2)(s + t + U + 4 ) ( s +  t +  U + 6 ) ( c +  s +  t +6))  . 

(4.19) 
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Iterating (4.19) gives 

x [I+(. + t + U + z ) ] ! { f ( C +  S +  t + 4)) ! ] ' / 'K (4.20) 

where K is mnstant along s = so - a, t = t o  - n, U = uo - 2n. Choose so + t o  = c, 

( s o , t o , u o )  is at the boundaly of the (O,O,c) weight diagram where there are 
no unwanted states and we can use simpler methods (not involving generators) to 
evaluate K of (4.20). Our state is 

then n = i ( c - s  - t ) ,  so = , ( c +  1 S -  t ) ,  t o  = $ ( c - s +  t ) ,  u0 = C +  U - S  - 1 .  2 

0 0  I ;: 2 i:) = N,~, ,~, ,~a(e+u-2*)/2P(e+u-2~)/2(  ay* + P6')(a+'-y)/2 

= Nda"Pb(ay' + = I d )  (4.21) 

Gy. Operating with the Hermitian conjugate operators ay'+p6' and i3,i3,. 
between the states I d )  and I d + 1 )  gives the recursion relation 

Nd+l = ( ( a  + l ) ( a +  b +  d +  2))-'12 (4.22) 
N d  

whose solution is 

(4.23) 

?his determines K of (4.20) to be 

(4.24) 
K = [  ( c  + 2)! 

{ + ( c +  s - t -t- 2 ) ] ! { $ ( c - s  + t + 2 ) ) ! { + ( S  + t - U ) } !  

and hence 

NS,*+' = K c  + 2)!(s + 1 )  ! ( t +  I ) ' (  . u+1)!]"2x [ { ; ( c - s - t ) ) ! { + ( s + u - t ) ] !  

' x { ; ( t + u - s ) ] ! { + ( s + t + u + 2 ) ] ! { ~ ( c + s + t + 4 ) } !  

x { + ( c + s - t + 2 ) } ! { + ( c - s + t t 2 ) } ! { + ( s t t - u ) ] ! ] - ' / 2 .  

(4.25) 

It is remarkable that the wanted part of the state a'pb(a6' -+ p 6 * ) d ( @ p  - 7 ~ ' ) ~  
has been normalized without it ever being isolated. 

Since we know the generator matrix elements A, lk  in equation (4.15), it 
is straightfonvard to find the reduced matrix elements. Because G-, , -J , -h = 
( - l ) ( ' -J+h) /2G,Jh  it follows that 

(4.26) 



Complete branching rules generating function 4845 

Hence we need to give only half the reduced matrix elements, say those for which 
i = -1 in (4.26). The results are 

IIGII: : :) ( O  

IIGII: : :) ( O  

IJGIJ: : :) ( O  

IIq: : :) ( 2 1  t + l  u + 2  

( 2 1  t - 1  O U 'I1q : :) 

( 2 1  t + l  O U cIIq : :) 

0 
s - 1  1 - 1  21-2 

= $[(.+'U - t ) ( t +  U -  s)(s+ t + U ) ( S  + t t  U + 2 ) ( c +  s + t + 4) 

x ( c  - s - t + 2) /U] ' /2  

0 
s - 1  t + l  U - 2  

= $[(s + U - t ) ( s  + U -  t - 2 ) ( s  + t +  U + 2 ) ( c +  s - t +  2 )  

x ( c -  s + t + 4 ) ( s + t  - U +2)/U]"z  

0 
s - 1  t - 1  U + 2  

= $[ (s  - U +  t ) ( s  - U + t - 2 ) ( c +  s + t + 4 ) ( c -  s - t + 2 )  

x ( s  + U - t + 2 ) ( t  + U - s + 2 ) / ( U + 2 ) y  

0 

1 = g [ ( s +  t - u ) ( t +  U - s + 2 ) ( t +  U -  s + 4 ) ( s +  t + U +  4) 

x ( c +  s - t + 2 ) ( c +  t - s + 4 ) / ( u +  2)]'12 

= i(s - t ) [ ( S +  t +  U + 2 ) ( s + t  -U)(.+ s + t + 4 ) ( C -  s - t + 2 )  

X(U+1) /2U(U+2)]1 '2  

= - +(S + t + 2 ) [ ( s +  U - t ) ( t  + U - s +  2 ) ( c +  s ' - t  t 2 )  

(4.27) 

Our generator matrix elements are in agreement with those given by Van der Jeugt 
and De Wilde (1984). Their paper, however, gives only the magnitude squared of 
the reduced matrix elements (no phases) and there is a typographical error in their 
equation (4.26); U should be 1 in the last factor. 

: 

x ( c - s  t t + 4 ) ( U +  1) /2U(U+ 2 p .  
! 
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